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Abstract
RGB-D cameras provide both color images and per-pixel depth estimates. The richness of this data and the recent devel-
opment of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper,
we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight.
By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered envi-
ronments using only onboard sensor data. All computation and sensing required for local position control are performed
onboard the vehicle, reducing the dependence on an unreliable wireless link to a ground station. However, even with
accurate 3D sensing and position estimation, some parts of the environment have more perceptual structure than others,
leading to state estimates that vary in accuracy across the environment. If the vehicle plans a path without regard to how
well it can localize itself along that path, it runs the risk of becoming lost or worse. We show how the belief roadmap
algorithm (Prentice and Roy 2009), a belief space extension of the probabilistic roadmap algorithm, can be used to plan
vehicle trajectories that incorporate the sensing model of the RGB-D camera. We evaluate the effectiveness of our sys-
tem for controlling a quadrotor micro air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor
environment, and discuss its limitations.

Keywords
Aerial robotics, sensing and perception, computer vision, motion planning

1. Introduction

Unmanned aerial vehicles (UAVs) rely on accurate knowl-
edge of their position for decision-making and control. As
a result, considerable investment has been made towards
improving the availability of the global positioning infras-
tructure, including utilizing satellite-based GPS systems
and developing algorithms to use existing RF signals such
as WiFi. However, most indoor environments and many
parts of the urban canyon remain without access to exter-
nal positioning systems, limiting the ability of current
autonomous UAVs to fly through these areas.

Localization using sonar ranging (Leonard and Durrant-
Whyte 1991), laser ranging (Thrun et al. 2000) or camera
sensing (Se et al. 2002) has been used extremely success-
fully on a number of ground robots and is now essentially
a commodity technology. Previously, we have developed
algorithms for MAV flight in cluttered environments using
laser rangefinders (Bachrach et al. 2009a) and stereo cam-
eras (Achtelik et al. 2009). Laser rangefinders that are cur-
rently available in form factors appropriate for use on a

MAV are very high precision, but only provide range mea-
surements along a plane around the sensor. Since these
sensors can only detect objects that intersect the sensing
plane, they are most useful in environments characterized
by vertical structures, and less so in more complex scenes.

Structured light RGB-D cameras are based upon stereo
techniques, and thus share many properties with stereo cam-
eras. The primary differences lie in the range and spatial
density of depth data. Since RGB-D cameras illuminate
a scene with a structured light pattern, they can estimate
depth in areas with poor visual texture but are range-limited
by their projectors. This paper presents our approach to
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Fig. 1. Our quadrotor micro air vehicle (MAV). The RGB-D
camera is mounted at the base of the vehicle, tilted slightly down.

providing an autonomous micro air vehicle with fast and
reliable state estimates and a 3D map of its environment by
using an onboard RGB-D camera and inertial measurement
unit (IMU). Together, these allow the MAV to safely operate
in cluttered, GPS-denied indoor environments. The control
of a micro air vehicle requires accurate estimation of not
only the position of the vehicle but also the velocity – esti-
mates that our algorithms are able to provide. Estimating a
vehicle’s 3D motion from sensor data typically consists of
estimating its relative motion at each time step by align-
ing successive sensor measurements such as laser scans
or RGB-D frames, a process most often known as “visual
odometry” when comparing camera or RGB-D images.

Given knowledge of the relative motion of the vehicle
from sensor frame to sensor frame, the 3D trajectory of the
vehicle in the environment can be estimated by integrating
the relative motion estimates over time. Given knowledge
of the vehicle position in the environment, the locations of
obstacles in each sensor frame can also be used to con-
struct a global map. While often useful for local position
control and stability, visual odometry methods suffer from
long-term drift and are not suitable for building large-scale
maps. To solve this problem, we also demonstrate how our
previous work on RGB-D mapping (Henry et al. 2010) can
be incorporated to detect loop closures, correct for accumu-
lated drift and maintain a representation of consistent pose
estimates over the history of previous frames.

However, the fast dynamics of UAVs have stringent
requirements in terms of state estimation accuracy. The
RGB-D sensor has a limited range and field of view, which
strongly affects its reliability for state estimation on UAVs.
When position information is temporarily not available
from the onboard sensors, the state estimate will diverge
from the true state much faster than on a ground vehicle,
giving the UAV greater sensitivity to sensor limitations as it
moves through the environment. Our approach to address-
ing this sensitivity is based on the belief roadmap (BRM)
algorithm (Prentice and Roy 2007; He et al. 2008a; Prentice
and Roy 2009). The BRM is a generalization of the prob-
abilistic roadmap (PRM) algorithm (Kavraki et al. 1996),
performing searches in the belief space of the vehicle effi-
ciently by using the symplectic form of the Kalman filter

(Abou-Kandil 2003) to find the minimum expected cost
path for the vehicle.

In this paper, we provide two primary contributions.
Firstly, we provide a systematic experimental analysis of
how the best practices in visual odometry using an RGB-D
camera enable the control of a micro air vehicle; this exper-
imental analysis integrates a range of previous results in
visual odometry. We show that visual odometry can be used
with the RGB-D camera to perform local map construc-
tion, and we adopt previous results in RGB-D simultaneous
localization and mapping (SLAM) for global loop closure
(Henry et al. 2010). Secondly, we give an extension of our
previous work in BRM planning (Prentice and Roy 2009)
for a quadrotor helicopter (Figure 1), providing a novel sam-
pling strategy that adapts to the information available in
the environment, a detailed comparison to other sampling
strategies and providing an experimental comparison using
the RGB-D camera. We describe our overall system, justify
the design decisions made, provide a ground-truth evalua-
tion, and discuss its capabilities and limitations. We con-
clude the paper with a demonstration of the quadrotor heli-
copter using the BRM algorithm to navigate autonomously
in indoor environments.

This paper extends preliminary results given by Huang
et al. (2011) and by He et al. (2008a), demonstrating the
RGB-D mapping algorithm and the BRM algorithm. We
give additional algorithmic details regarding estimation and
mapping, provide the extension of the BRM to other sen-
sor modalities such as the RGB-D camera, and give a more
thorough experimental analysis in real-world environments.

2. Vehicle position estimation

The problem we address is that of quadrotor helicopter nav-
igation. The quadrotor must use the onboard RGB-D sensor
to estimate its own position (local estimation), build a dense
3D model of the environment (global simultaneous local-
ization and mapping) and use this model to plan trajectories
through the environment.

Our algorithms are implemented on the vehicle shown
in Figure 1. The vehicle is a Pelican quadrotor manufac-
tured by Ascending Technologies GmbH. The vehicle has
a maximal dimension of 70 cm, and a payload of up to
1000 g. We mounted a stripped down Microsoft Kinect sen-
sor and connected it to the onboard flight computer. The
flight computer, developed by the Pixhawk project at ETH
Zurich (Meier et al. 2011), is a 1.86 GHz Core2Duo proces-
sor with 4 GB of RAM. The computer is powerful enough to
allow all of the real-time estimation and control algorithms
to run onboard the vehicle.

Following our previous work, we developed a system
that decouples the real-time local state estimation from
the global SLAM. Figure 2 depicts the organization of the
processes and control flow of the system, adapted from
Bachrach et al. (2011). The local state estimates are com-
puted from visual odometry (Section 2.2), and to correct
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Fig. 2. Block diagram of the overall system. The local state
estimates are computed from visual odometry (Section 2.2). To
correct for drift of these local estimates, the estimator period-
ically incorporates position corrections provided by the SLAM
algorithm (Section 2.3).

for drift in these local estimates the estimator periodically
incorporates position corrections provided by the SLAM
algorithm (Section 2.3). This architecture allows the SLAM
algorithm to use much more processing time than would
be possible if the state estimates from the SLAM algo-
rithm were directly used to control the vehicle. Although
our current system architecture runs the SLAM and plan-
ner processes offboard the vehicle, the feasibility of full
onboard operation without a link to a ground station has
been shown previously by Shen et al. (2011). While their
previous work used a laser sensor rather than an RGB-D
camera, our SLAM process is not significantly more com-
putationally costly. Additionally, we will show in this paper
that each query of our planner is not significantly more
costly than a conventional shortest path planner. The major
computational difference is the graph construction, which
can be amortized over all future queries.

If the UAV does not have access to perfect state knowl-
edge, such as from external sources (e.g. motion cap-
ture, GPS, etc.), it can localize itself by first using sen-
sors to measure environmental features and then by reg-
istering the measurements against a pre-existing map. To
control the quadrotor, we integrated the new visual odom-
etry and RGB-D mapping algorithms into our system
previously developed around 2D laser scan-matching and
SLAM (Bachrach et al. 2009a, 2011).

We keep the SLAM process separate from the real-time
control loop, instead having it provide corrections for the
real-time position estimates. Since these position correc-
tions are delayed significantly from when the measurement
upon which they were based was taken, we must account for
this delay when we incorporate the correction by retroac-
tively modifying the appropriate position estimate in the
state history. All future state estimates are then recomputed
from this corrected position, resulting in globally consis-
tent real-time state estimates. By incorporating the SLAM
corrections after the fact, we allow the real-time state esti-
mates to be processed with low enough delay to control the
MAV, while still incorporating the information from SLAM
to ensure drift-free position estimation.

2.1. State estimation

Throughout this work, the vehicle navigation and control
is assumed to depend on an estimate of the position and
velocity of the vehicle given by the state vector x. The
instantaneous state of the vehicle xt is not directly observ-
able but must be inferred from noisy measurements z1:t and
is a function of the control actions u1:t. In order to mitigate
the effects of noisy measurements, we use Bayesian filter-
ing to infer a probability distribution p( xt|u1:t, z1:t) over the
state, expressed as

p( xt|u1:t, z1:t) =1

Z
p( zt|xt)

∫
S
p( xt|ut, xt−1) p( xt−1) dxt−1 (1)

where Z is a normalizer. Equation (1), known as the Bayes’
filter, provides an efficient, recursive way to update the state
distribution after each action ut and measurement zt. We use
the Kalman family of Bayes’ filters to perform data fusion
(cf. Figure 2), integrating measurements from multiple sen-
sors, e.g. the onboard IMU, the visual odometry and the
global SLAM process.

The visual odometry and mapping processes described in
Sections 2.2 and 2.3 are of course state estimators in their
own right, but we treat these processes as additional mea-
surements. However, Bayesian filtering requires a sensor
model, characterizing the uncertainty of each measurement.
Since our visual odometry and mapping algorithms do not
provide an explicit model of the uncertainty of the posterior
state estimate, we fit a constant noise model to each estima-
tor acquired from data. This is clearly a limiting assump-
tion as the accuracy and uncertainty of both processes are
dependent on the instantaneous measurements. We are cur-
rently examining the problem of learning adaptive noise
models for these processes.

While the overall structure of the state estimation process
does not change, we report results using different filtering
techniques to instantiate equation (1), depending on the spe-
cific sensors. For the experimental analysis of the visual
odometry using the RGB-D camera, we use the extended
Kalman filter (EKF), described in Appendix A. For the
laser-based validation of the extensions to the BRM algo-
rithm, we use the unscented Kalman filter (UKF), described
in Appendix B.

2.2. Visual odometry

The goal of visual odometry is to estimate the relative
position change of the camera between pairs of succes-
sive images. Each of these estimated position changes
can then be incorporated into the overall state estimate
using a specific formulation of equation (1) as described
in Section 2.1. The visual odometry algorithm that we
have developed is based around a standard stereo visual
odometry pipeline, with components adapted from existing
algorithms. While most visual odometry algorithms fol-
low a common architecture, a large number of variations
and specific approaches exist, each with its own attributes.
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Fig. 3. The input RGB-D data to the visual odometry algorithm
alongside the detected feature matches. The top row images are
from time t, the bottom row images are from time t + 1. The left
column is the depth image, and the middle column is the corre-
sponding RGB image. The right hand column shows the pixels
that are matched between frames, where inlier feature matches are
drawn in blue and outliers are drawn in red.

A contribution of this paper is to specify the steps of our
visual odometry algorithm, compare the alternatives for
each step, and provide a reference implementation. (Our
visual odometry implementation is open source and avail-
able for download at http://fovis.googlecode.com.) In this
section we specify these steps and we provide the exper-
imental comparison of each step in the visual odometry
pipeline. Our overall algorithm is most closely related to the
approaches taken by Mei et al. (2009) and Howard (2008),
and consists of the following sequence of operations:

1. Image preprocessing. An RGB-D image is first acquired
from the RGB-D camera (Figure 3). The RGB com-
ponent of the image is converted to grayscale and
smoothed with a Gaussian kernel of σ = 0.85. A Gaus-
sian pyramid is then constructed to enable more robust
feature detection at different scales. Each level of the
pyramid corresponds to one octave in scale space. Fea-
tures at the higher scales generally correspond to larger
image structures in the scene, which generally makes
them more repeatable and robust to motion blur.

2. Feature extraction. Features are extracted at each level
of the Gaussian pyramid using the FAST feature detec-
tor (Rosten and Drummond 2006). The threshold for
the FAST detector is adaptively chosen using a simple
proportional controller to ensure a sufficient number of
features are detected in each frame. The depth corre-
sponding to each feature is also extracted from the depth
image. Features that do not have an associated depth are
discarded. To maintain a more uniform distribution of
features, each pyramid level is discretized into 80 × 80
pixel buckets, and the 25 features in each bucket with
the strongest FAST corner scores are retained.

3. Initial rotation estimation. For small motions such
as those encountered in successive image frames, the
majority of a feature’s apparent motion in the image
plane is caused by 3D rotation. Estimating this rotation

allows us to constrain the search window when match-
ing features between frames. We use the technique pro-
posed by Mei et al. (2009) to compute an initial rota-
tion by directly minimizing the sum of squared pixel
errors between down-sampled versions of the current
and previous frames.
One could also use an IMU or a dynamics model of
the vehicle to compute this initial motion estimate;
however, the increased generality of the image-based
estimate is preferable, while providing sufficient per-
formance. An alternative approach would be to use a
coarse-to-fine motion estimation that iteratively esti-
mates motion from each level of the Gaussian pyramid,
as proposed by Johnson et al. (2008).

4. Feature matching. Each feature is assigned an 80-byte
descriptor consisting of the brightness values of the
9 × 9 pixel patch around the feature, normalized to
zero mean and omitting the bottom right pixel. The
omission of one pixel results in a descriptor length
more suitable for vectorized instructions. Features are
then matched across frames by comparing their fea-
ture descriptor values using a mutual-consistency check
(Nistér et al. 2004). The match score between two
features is the sum-of-absolute differences (SAD) of
their feature descriptors (Howard 2008), which can
be quickly computed using single-instruction multiple-
data (SIMD) instructions such as Intel SSE2. A feature
match is declared when two features have the lowest
scoring SAD with each other, and they lie within the
search window defined by the initial rotation estimation.
Once an initial match is found, the feature location
in the newest frame is refined to obtain a subpixel
match. Refinement is computed by minimizing the sum-
of-square errors of the descriptors, using an efficient
second-order minimization (ESM) technique (Benhi-
mane and Malis 2004) to solve the iterative nonlinear
least squares problem. We also use SIMD instructions
to speed up this process.

5. Inlier detection. Although the constraints imposed by
the initial rotation estimation substantially reduce the
rate of incorrect feature matches between frames, an
additional step is necessary to further prune away bad
matches. We follow Howard’s approach of computing a
graph of consistent feature matches, and then using a
greedy algorithm to approximate the maximal clique in
the graph (Hirschmuller et al. 2002; Howard 2008).
The graph is constructed according to the fact that rigid
body motions are distance-preserving operations – the
Euclidean distance between two features at one time
should match their distance at another time. Thus, each
pair of matched features across frames is a vertex in
the graph, and an edge is formed between two such
pairs of matched feature if the 3D distance between the
features does not change substantially from the prior
frame to the subsequent frame. For a static scene, the
set of inliers make up the maximal clique of consis-
tent matches. The max-clique search is approximated
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Fig. 4. Panorama photograph of the motion capture room used
to conduct our ground-truth experiments. Visual feature density
varies substantially throughout this room.

by starting with an empty set of matched feature pairs
and iteratively adding matched feature pairs with great-
est degree that is consistent with all matched feature
pairs in the clique (Figure 3). Overall, this algorithm
has a runtime quadratic in the number of matched fea-
ture pairs, but runs very quickly due to the speed of
the consistency checking. In our experimental anal-
ysis, we compare this approach to RANSAC-based
methods (Nistér et al. 2004; Konolige et al. 2007).

6. Motion estimation. The final motion estimate is com-
puted from the matched features in three steps. First,
Horn’s absolute orientation method provides an ini-
tial estimate by minimizing the Euclidean distances
between the inlier feature matches (Horn 1987). Second,
the motion estimate is refined by minimizing the fea-
ture reprojection error using a nonlinear least-squares
solver (Benhimane and Malis 2004). This refinement
step implicitly accounts for the increase in depth uncer-
tainty with range due to the fact that the depth esti-
mates are computed by stereo matching in image space.
Finally, feature matches exceeding a fixed reprojection
error threshold are discarded from the inlier set and the
motion estimate is refined once again.
To reduce short-scale drift, we additionally use a
keyframe technique. Motion is estimated by comparing
the newest frame against a reference frame. If the cam-
era motion relative to the reference frame is successfully
computed with a sufficient number of inlier features,
then the reference frame is not changed. Otherwise,
the newest frame replaces the reference frame after
the estimation is finished. If motion estimation against
the reference frame fails, then the motion estimation
is tried again with the second most recent frame. This
simple heuristic serves to eliminate drift in situations
where the camera viewpoint does not vary significantly,
a technique especially useful when hovering.

2.2.1. Visual odometry performance There are a variety of
visual odometry methods, and the existing literature is often
unclear about the advantages and limitations of each. We
present results comparing a number of these approaches and
analyze their performance. As is true in many domains, the
tradeoffs can often be characterized as increased accuracy
at the expense of additional computational requirements.
In some cases, the additional cost is greatly offset by the
improved accuracy.

We conducted a number of experiments using a motion
capture system that provides 120 Hz ground-truth measure-
ments of the MAV’s position and attitude. The motion cap-
ture environment can be characterized as a single room
approximately 11× 7× 4 m in size, lit by overhead fluores-
cent lights and with a wide variation of visual clutter – one
wall is blank and featureless, and the others have a vary-
ing number of objects and visual features (see Figure 4).
While this is not a large volume, it is representative of many
confined, indoor spaces, and the motion capture system pro-
vides the opportunity to directly compare against ground
truth.

We recorded a dataset of the MAV flying various patterns
through the environment, designed to challenge vision-
based approaches to the point of failure, and includes
motion blur and feature-poor images, as would commonly
be encountered indoors and under moderate lighting con-
ditions. Substantial movement in X , Y , Z, and yaw were all
recorded, with small deviations in roll and pitch. We numer-
ically differentiated the motion capture measurements to
obtain the vehicle’s ground truth 3D velocities, and com-
pared them to the velocities and trajectories estimated by
the visual odometry and mapping algorithms. Table 1 shows
the performance of our integrated approach, and its behav-
ior when adjusting different aspects of the algorithm. Each
experiment varied a single aspect from our approach. We
present the mean velocity error magnitude, the overall com-
putation time per RGB-D frame and the gross failure rate.
We define a gross failure to be any instance where the
visual odometry algorithm was either unable to produce a
motion estimate (e.g. due to insufficient feature matches) or
where the error in the estimated 3D velocities exceeded a
fixed threshold of 1 m/s. Timing results were computed on
a 2.67 GHz laptop computer.

Visual odometry variations

Figure 5 shows the overall flow of the visual odometry pro-
cess, including the different variants that we assessed for
the following steps of the process:

Inlier detection. RANSAC-based methods (Nistér et al.
2004) are more commonly used than the greedy max-
clique approach. We tested against two RANSAC schemes,
traditional RANSAC, and preemptive RANSAC (Nistér
2005).

Experimentally, we saw that for a fixed amount of com-
putation time, RANSAC often performed worse than the
greedy max-clique approach when a high fraction of the
matches were outliers. In such cases, many iterations are
required to find the correct hypothesis with high probabil-
ity. Each of these iterations involves generating a motion
hypothesis from three randomly selected matches and test-
ing the consistency of the remaining matched features
against this hypothesis evaluated in terms of reprojection
error. The evaluation becomes especially onerous with a
large number of matches. Preemptive RANSAC attempts
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Fig. 5. Overall process flow of visual odometry. The different alternatives for each step of the process are shown in each box, and the
best performing algorithm is highlighted in yellow.

to speed up RANSAC by avoiding excessive scoring of
wrong motion hypotheses, but still must bear the cost of
evaluating hypotheses in terms of reprojection error. In our
experiments, when allocated a comparable amount of com-
putation time (by using 500 hypotheses), greedy max-clique
outperformed both by virtue of the very fast consistency
checking.

Initial rotation estimation. A good initial rotation esti-
mate can help constrain the feature matching process and
reduce the number of incorrect feature matches. Disabling
the rotation estimate results in slightly faster runtime, but
more frequent estimation failures.

Gaussian pyramid levels. Detecting and matching fea-
tures on different levels of a Gaussian pyramid provides
resilience against motion blur and helps track larger fea-
tures.

Reprojection error. We compared unidirectional motion
refinement, which minimizes the reprojection error of
newly detected features onto the reference frame, against
bidirectional refinement, which additionally minimizes the
reprojection error of reference features projected onto the
new frame. We additionally compared a standard Gauss–
Newton optimization technique with ESM (Benhimane and
Malis 2004). Bidirectional refinement does provide slightly
more accuracy without substantially greater cost, and we
found no significant difference between Gauss–Newton and
ESM.

Feature window size. As expected, larger feature win-
dows result in more successful motion estimation at the
cost of additional computation time. Interestingly, a very
small window size of 3×3 yielded reasonable performance,

a behavior we attribute to the constraints provided by the
initial rotation estimate.

Subpixel refinement, adaptive thresholding, and feature
bucketing. We found the accuracy improvements afforded
by subpixel feature refinement outweighed its additional
computational cost. While the lighting in the motion cap-
ture experiments did not substantially change, adaptive
thresholding still yielded a lower failure rate. We would
expect the accuracy difference to be greater when flying
through more varied lighting conditions. Finally, without
feature bucketing, the feature detector often detected clus-
ters of closely spaced features, which in turn confused the
matching process and resulted in both slower speeds and
decreased accuracy.

Real-world environments

The failure rate reported in Table 1 leads to the conclu-
sion that our algorithm is unlikely to have been capable of
autonomously flying the MAV during the entire recorded
trajectory through this environment with artificially sparse
perceptual features. We also compared the performance of
our algorithm in a more realistic environment with richer
visual features. Example images of the sparse environment
and the real-world environment are shown in Figures 6(a)
and 6(b), respectively.

In Table 2, we observe that the performance of the algo-
rithm in the real-world environment was significantly better
than in the sparse environment. In this environment, many
of the gross failures are due to the blank wall on one side
of the room – no state estimation process based on visual
features can overcome this problem. To specifically address
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Table 1. Comparison of various approaches on a challenging
dataset. The error was measured using a high-resolution motion
capture system for ground truth.

Velocity error % gross Total
(m/s) failures time (ms)

Our approach 0.387 ± 0.004 3.39 14.7
Inlier detection
RANSAC 0.412 ± 0.005 6.05 15.3
Preemptive RANSAC 0.414 ± 0.005 5.91 14.9
Greedy max-clique
– our approach 0.387 ± 0.004 3.39 14.7
Initial rotation estimate
None 0.388 ± 0.004 4.22 13.6
Gaussian pyramid levels
1 0.387 ± 0.004 5.17 17.0
2 0.385 ± 0.004 3.52 15.1
3 – our approach 0.387 ± 0.004 3.39 14.7
4 0.387 ± 0.004 3.50 14.5
Reprojection error
minimization
Bidir. Gauss–Newton 0.387 ± 0.004 3.24 14.7
Bidir. ESM – our approach 0.387 ± 0.004 3.39 14.7
Unidir. Gauss–Newton 0.391 ± 0.004 3.45 14.6
Unidir. ESM 0.391 ± 0.004 3.47 14.6
Absolute orientation only 0.467 ± 0.005 10.97 14.4
Feature window size
3 0.391 ± 0.004 5.96 12.8
5 0.388 ± 0.004 4.24 13.7
7 0.388 ± 0.004 3.72 14.2
9 – our approach 0.387 ± 0.004 3.39 14.7
11 0.388 ± 0.004 3.42 15.7
Subpixel feature
refinement
No refinement 0.404 ± 0.004 5.13 13.1
Adaptive FAST threshold
Fixed threshold (10) 0.385 ± 0.004 3.12 15.3
Feature grid/bucketing
No grid 0.398 ± 0.004 4.02 24.6

(a) Sparse environment (b) Realistic environment

Fig. 6. Comparison of samples images from a sparse, challenging
dataset (a) and a more realistic dataset (b).

this problem and to ensure the safety of the vehicle, we will
turn to planning algorithms presented in Section 3.

2.3. Mapping

Visual odometry provides locally accurate pose estimates;
however, global consistency is needed for metric map gen-
eration and navigation over long time-scales. We therefore

Table 2. Comparison of performance in a sparse, challenging
dataset and a more realistic dataset. We use the same modules and
parameters as described above in both environments.

Velocity error % gross
(m/s) failures

Sparse environment 0.387 ± 0.004 3.39
Realistic environment 0.08 ± 0.004 0

integrate our visual odometry system with our previous
work in RGB-D mapping (Henry et al. 2010) to provide
corrections to the estimated position changes of the cam-
era between loop closures. Just as with the visual odometry,
each of these estimated position changes can then be incor-
porated into the overall state estimate using a specific for-
mulation of equation (1) as described in Section 2.1. This
section focuses on the key decisions required for real-time
operation; we refer readers to our previous publication for
details of the original algorithm that emphasizes mapping
accuracy (Henry et al. 2010).

Unlike the local pose estimates needed for maintaining
stable flight, map updates and global pose updates are not
required at a high frequency and can therefore be processed
on an offboard computer. The MAV transmits RGB-D data
to an offboard laptop, which detects loop closures, com-
putes global pose corrections, and constructs a 3D log-
likelihood occupancy grid map. For coarse navigation, we
found that a grid map with 10 cm resolution provided a
useful balance between map size and precision. Each depth
image from the camera is downsampled to 128×96 prior to
a voxel map update to increase the update speed, resulting
in spacing between depth pixels of approximately 5 cm at
a range of 6 m. Incorporating a single frame into the voxel
map currently takes approximately 1.5 ms.

As before, we adopt a keyframe approach to loop
closure – new RGB-D frames are matched against a small
set of keyframes to detect loop closures, using a fast image
matching procedure (Henry et al. 2010). New keyframes
are added when the accumulated motion since the previous
keyframe exceeds either 10◦ in rotation or 25 cm in trans-
lation. When a new keyframe is constructed, a RANSAC
procedure over FAST keypoints (Rosten and Drummond
2006) compares the new keyframe to keyframes occurring
more than 4 s prior. As loop closure requires matching
non-sequential frames, we obtain putative keypoint matches
using Calonder randomized tree descriptors (Calonder et al.
2008). A new keypoint is considered as a possible match
to an earlier frame if the L2 distance to the most sim-
ilar descriptor in the earlier frame has a ratio less than
0.6 with the next most similar descriptor. RANSAC inlier
matches establish a relative pose between the frames, which
is accepted if there are at least 10 inliers. Matches with a
reprojection error below a fixed threshold are considered
inliers. The final refined relative pose between keyframes is
obtained by solving a two-frame sparse bundle adjustment
(SBA) system, which minimizes overall reprojection error.
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To keep the loop closure detection near constant time
as the map grows, we limit the keyframes against which
the new keyframe is checked. First, we only use keyframes
whose pose differs from the new frame (according to
the existing estimates) by at most 90◦ in rotation and
5 m in translation. We also use Nistér’s vocabulary tree
approach (Nistér and Stewenius 2006), which uses a quan-
tized “bag of visual words” model to rapidly determine the
15 most likely loop closure candidates. Keyframes that pass
these tests are matched against new frames, and matching
is terminated after the first successful loop closure. On each
successful loop closure, a new constraint is added to a pose
graph, which is then optimized using TORO (Grisetti et al.
2007a). Pose graph optimization is typically fast, converg-
ing in roughly 30 ms. Corrected pose estimates are then
transmitted back to the vehicle, along with any updated
voxel maps.

Greater global map consistency can be achieved using a
sparse bundle adjustment technique that optimizes over all
matched features across all frames (Konolige 2010). How-
ever, this is a much slower approach and not yet suitable for
real-time operation.

3. Trajectory planning

The visual odometry and SLAM processes in the previ-
ous sections described how to estimate the position of the
vehicle and the environment around it, but did not describe
how the vehicle should move to explore that environment.
We assume that the vehicle is holonomic and that we have
full control authority, allowing us to treat the trajectory
planning problem as a kinematic motion planning problem.
Our UAV uses an onboard IMU and processor to auto-
stabilize the helicopter’s pitch and roll axes (Gurdan et al.
2007). As a result, we model the configuration space as
C = R3×S1: three dimensions for the UAV’s position, and
one for the UAV’s yaw angle, where C denotes the config-
uration space (Lozano-Perez 1983), the space of all vehicle
poses. Cfree ∈ C is the set of all collision-free poses (based
on a known map M of obstacles and the dimensions of the
UAV) and Cobst ∈ C is the set of poses resulting in colli-
sion with obstacles, so that C ≡ Cfree ∪ Cobst. Exploring an
unknown environment is often modelled as a problem of
coverage, where the objective is to visit all reachable states
or “frontiers” that lie on the boundary of the known free
space (Yamauchi et al. 1998; Kollar and Roy 2008). There-
fore, given the current vehicle state x0 ∈ Cfree and the partial
map of the environment, the planning problem is to find a
sequence of actions to move the vehicle from state x0 to a
frontier state xg ∈ Cfree without collisions.

The probabilistic roadmap (PRM) is a well-known algo-
rithm (Kavraki et al. 1996) for planning in problems of more
than two or three dimensions, in which a discrete graph
is used to approximate the connectivity of Cfree. The PRM
builds the graph by sampling a set of states randomly from
C (adding the start state x0 and goal state xg), and then eval-
uating each sampled state for membership in Cfree. Samples

that lie within Cfree constitute the nodes of the PRM graph
and edges are placed between nodes where a straight line
path between nodes also lies entirely within Cfree. Given
the PRM graph, a feasible, collision-free path can be found
using a standard graph search algorithm from the start node
to the goal node.

However, the PRM and its variants are not yet well
suited to the problem of a GPS-denied UAV, in that exe-
cuting a plan requires a controller that can follow each
straight-line edge joining two successive graph nodes in the
planned path. If the UAV executing the plan does not have
a good estimate of its state, it may not be able to deter-
mine when it has arrived at a graph node and is to start
following a new edge. Even more seriously, UAV stabil-
ity typically depends on accurate estimates of higher order
variables such as velocity. Without environmental feedback,
velocity estimates from an inertial measurement unit (IMU)
can quickly drift, causing catastrophic control failures. We
therefore need the motion planner to generate plans that
ensure accurate state estimation along the planned path.
Recall from Section 2.1 that our state estimates for con-
trol are provided by the Bayes filter of equation (1), which
generates a distribution over possible states by fusing mea-
surements from multiple sensors. Since these distributions
are provided by the Kalman family of filters, the poste-
rior distributions will be Gaussian, characterized by a mean
state μ and a covariance �. By planning in the belief
space (or space of distributions), the planner can distinguish
between future state estimates where the covariance will be
small (i.e. the vehicle has high confidence in its mean state
estimate) and future state estimates where the covariance
will be large (i.e. the mean state estimate is uncertain). To
address the problem of planning in belief space, we use the
belief roadmap (BRM) algorithm, first presented by Pren-
tice and Roy (2007), and summarize the algorithm in the
following section.

3.1. Belief space planning

When planning in belief space, a naive approach would
be to treat the belief space as a high-dimensional config-
uration space with some dimensions given by the covari-
ance of the belief, and then directly apply the probabilistic
roadmap. Assuming the beliefs are provided by a variant of
the Kalman filter as described in Section 2.1, this approach
would require sampling beliefs directly from the space of
Gaussian distributions ( μ, �) over the state, adding the
initial belief b0 to the set of graph nodes, placing edges
between pairs of beliefs ( bi, bj) for which a controller exists
that can take the vehicle from belief bi to bj, and then car-
rying out a graph search as before to find a path that leads
to a belief with maximum probability at the goal. However,
the direct application of the unmodified PRM to the belief
space has some obvious failures, which can be addressed by
the following modifications to the PRM algorithm.

Firstly, in a Gaussian belief space, every belief has some
(small) probability that the robot is at the goal state, hence a
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different objective function is required. In order to incorpo-
rate the full Gaussian distribution in our planning process,
we continue to search for a shortest path trajectory, but add
the additional constraint that the uncertainty of the belief
must be small throughout the path, that is, the trace of
the covariance of the helicopter’s belief tr( �) < ε where
ε is some defined safety parameter and � is the covari-
ance of the UAV’s state estimate. (Note that, depending on
the problem statement, covariance terms such as velocity
and orientation may or may not be included in the overall
objective. A variety of alternatives to this objective func-
tion are discussed in the original BRM paper (Prentice and
Roy 2009).)

To plan efficiently, the BRM uses the fact that each Gaus-
sian belief bt is a combination of some μ and some �,
where the reachability of μ and � can be calculated sep-
arately. Under mild assumptions of unbiased motion and
sensor models, the reachability of any μ is a function of the
vehicle kinematics and the environmental structure, just as
in the PRM. For any μ that is reachable from the μ0 of the
initial distribution, the corresponding reachable covariance
can be predicted by propagating the initial covariance �0

along the path using an iterative application of the motion
and sensing models (see equations (8) and (9) in Appendix
A). Therefore, to construct a graph of the reachable belief
space, the planner first samples a set of mean poses {μi}
from Cfree using the standard pose sampling of the PRM
algorithm, and places an edge eij between pairs ( μi, μj) if
the straight line between poses is collision free. A forward
search can then be used to search for a path through the
graph, but each step of the search computes the posterior
covariance at each node in addition to the cost-to-go.

Covariance propagation requires multiple EKF updates
along each edge eij. While the cost of propagating the
covariances along each edge in the graph is a constant
multiplier of the asymptotic search complexity, it can still
dominate the overall search time.

To reduce this computational cost, the BRM uses the
property that the covariance of a Kalman filter-based state
estimator can be factored as � = BC−1, which allows the
two steps of the process and measurement update for the
EKF to be combined as separate Bt and Ct block matrices,
each a linear function of Bt−1 and Ct−1. The complete EKF
equations are given in Appendix A, but the key quantities
for propagation of the covariance are the process Jacobian,
Gt, process noise, Rt, the measurement Jacobian, Mt, and
the measurement noise, Qt. The linear forms of the pro-
cess and measurement update do not depend on the specific
factorization, so we can use a trivial initial factorization as
B0 = �0, C0 = I , such that

�t �
[

B
C

]
t

=
[

0 I
I M

]
t

[
0 G−T

G RG−T

]
t

[
B
C

]
t−1

(2)

where �t is defined to be the stacked block matrix[
B
C

]
t

Algorithm 1 Belief roadmap (BRM) algorithm.
Require: Start belief ( μ0, �0), goal μgoal and map C

1: Sample poses {xi} from Cfree to build belief graph node set
{ni} such that ni = {μ = xi, � = ∅}

2: Create edge set {eij} between nodes ( ni, nj) if the straight-line
path between ( ni[μ], nj[μ]) is collision free

3: Build one-step transfer functions {ζij} ∀eij ∈ {eij}
4: Augment each node ni with the best path p = ∅ to ni, such

that ni = {μ, �, p}
5: Create search queue with initial position and covariance Q←

n0 = {μ0, �0, ∅}
6: while Q is not empty do
7: Pop n← Q
8: if n = ngoal then
9: Continue

10: end if
11: for all n′ such that ∃en,n′ and not n′ � n[p] do
12: Compute one-step update � ′ = ζn,n′ · �, where � =[ n[�]

I

]
13: �′ ← � ′11 ·� ′21

−1

14: if tr( �′) < tr( n′[�]) then
15: n′ ← {n′[μ], �′, n[p] ∪ {n′}}
16: Push n′ → Q
17: end if
18: end for
19: end while
20: return ngoal[p]

consisting of the covariance factors and

ζt �
[

W X
Y Z

]
t

is defined to be the one-step linear operator on the covari-
ance factors, equivalent to the process model and the mea-
surement model. We recover the posterior covariance from
the posterior factors as �t = BtC

−1
t .

The EKF approximation assumes that the measurement
function is locally linear, which is exactly the approxima-
tion that the Jacobian is locally constant. As a result, when-
ever the EKF assumptions hold, then we can assume that
Mt is constant and known a priori. By multiplying �t−1

by a series of matrices ζt:T , we can compute the posterior
covariance �T from T−t matrix multiplications and a single
matrix inversion on CT . This allows us to determine ζt for
any point along a trajectory and the linearity of the update
allows us to combine multiple ζt matrices into a single, one-
step update for the covariance along the entire length of a
trajectory.

Algorithm 1 describes the complete belief roadmap algo-
rithm, and Step 2 of the algorithm contains a pre-processing
phase where each edge is labeled with the transfer function
ζij that allows each covariance to be propagated in a single
step. By pre-computing the transfer function for each edge,
the search complexity for belief space planning becomes
comparable to configuration space planning.
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3.1.1. Belief space planning using the unscented Kalman
filter The critical step of the BRM algorithm is the con-
struction of the transfer function, which depends on terms
Rt and Mt, the projections of the process and measurement
noise terms into the state space. Rt and Mt represent the
information lost due to motion, and the information gained
due to measurements, respectively (again, see equations (8)
and (9) in Appendix A). When using the extended Kalman
filter (EKF) to perform state estimation, these terms are triv-
ial to compute. However, the EKF is not always a feasible
form of Bayesian filtering, especially when linearizing the
control or measurement functions results in a poor approx-
imation. One recent alternate to the EKF is the unscented
Kalman filter (UKF) (Julier et al. 1995), which uses a set of
2n+1 deterministic samples, known as “sigma points” from
an assumed Gaussian density both to represent the proba-
bility density of a space of dimensionality n and to directly
measure the relevant motion and measurement covariances.
Appendix B provides a formal description of the UKF, and
how to recover the information gain matrix Mt.

One concern is that the change in information modelled
by Mt is constant in the Kalman filter and approximated as
constant in the extended Kalman filter (assuming locally
constant Jacobians), but in the UKF model, the change
in information depends on the specific prior �t. Different
choices of �t for equation (27) may result in different one-
step transfer functions. Nevertheless, the approximation
error can be seen experimentally to be small. Figure 7(a)
compares the covariances computed using the full UKF
update with the covariances computed using the one-step
transfer function for a range of motions and randomized
initial conditions. The induced error is low; the traces of
the posterior covariances computed with the one-step trans-
fer function using the Mt matrix calculated in equation (27)
closely match the posterior covariances from the full UKF
model. Figure 7(b) shows a distribution of the ratio of the
approximation errors to the magnitudes of the information
gain, where 7000 trials were performed using 100 differ-
ent priors and a range of initial conditions and trajectories
were used to calculate the Mt matrix. The error induced in
the one-step transfer function by using a constant Mt is less
than 2% with a significance of p = 0.955, indicating low
sensitivity to the choice of prior over a range of operating
conditions.

3.2. Sampling in belief space

The original belief roadmap formulation presented by Pren-
tice and Roy (2007, 2009) assumed some base sampling
strategy for generating the graph through belief space. As
the number of samples and the density of the graph grows,
the BRM planning process will find increasingly low-
covariance paths and is probabilistically complete. How-
ever, as the density of the graph grows, the cost of searching
the graph will also grow; searching the graph will have time
complexity O( bd) for b edges per node and a path of length

d edges. We can reduce this complexity by minimizing the
size of the graph using a sampling strategy that generates
nodes that reflect the useful part of the belief space.

The optimal sampling strategy would generate samples
that lie only on the optimal path to the goal; this would of
course require knowing the optimal path beforehand. How-
ever, some samples are more likely to be useful than others:
vehicle poses that generate measurements with high infor-
mation value are much more likely to lie on the optimal
path than vehicle poses that generate measurements with
little information.

3.2.1. Sensor uncertainty sampling If poses are initially
sampled from C uniformly, but are accepted or rejected
with probability proportional to the expected information
gain from sensing at each point, the graph will still con-
verge to one that maintains the connectivity of the free
space. But, the distribution of the graph nodes will be biased
towards locations that generate sensor measurements which
maximize the localization accuracy of the vehicle. We call
this sampling strategy sensor uncertainty (SU) sampling,
after the “sensor uncertainty field” defined by Takeda and
Latombe (1992). The SU field is a mapping from location
x to the expected information gain, x → I( x), where the
information gain is measured as the difference in entropy of
the prior and posterior distributions, which in the Gaussian
case is proportional to the lengths of the eigenvectors of the
covariance. However, examining the information filter form
of the measurement update in equation (12), we can see that
the posterior covariance results from adding a fixed amount
of information Mt; the covariance therefore increases in size
by an amount proportional to Mt. We can efficiently approx-
imate the SU field using the size of Mt such as tr( Mt) (that
is, the average of each eigenvector of Mt, Fedorov 1972),
rather than explicitly computing the posterior covariance
and the resulting information gain. Finally, building the
complete SU field is computationally expensive in practice;
by sampling from this field in building the BRM graph, we
gain the benefits of focusing the search on the states that
lead to high information gain without the cost of explicitly
building the SU field.

Figure 8(a) shows the ground floor of MIT’s Stata Center
with a 3D view of this environment in Figure 8(b). The
environment has dimensions of 13 × 23 m. The helicopter
is equipped with a simulated RGB-D camera that is able
to sense features, represented by the green crosses on the
walls. We initially assume an unrealistically poor sensor
model to highlight the variations of the different algorithms,
specifically that the camera has a 2 m range and a 30◦

field-of-view in the pitch and the yaw directions. A feature
that falls within the helicopter’s field-of-view will then
generate a noisy measurement of the feature’s distance and
bearing relative to the helicopter’s pose. The measurement
noise is assumed to be Gaussian with 1 m2 variance for
the range measurement and 1 rad2 in angular variance,
and is independent of the distance between the feature and
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Fig. 7. (a) Comparison of the trace of the covariance from full UKF filtering and the trace of the covariance from the one-step transfer
function using the UKF Mt matrix. (b) Distribution of the ratio of errors induced by computing the Mt matrix for the one-step transfer
function using a constant prior.

(a) Photo of environment (b) 3D-environment (c) SU Field

Fig. 8. (a) MIT’s Stata Center, ground floor. (b) 3D model of the unstructured, GPS-denied environment. The green crosses are the
known positions of visual features to be used for localization. Each wall has a different density of visual features, though the features
are assumed to be uniformly distributed on each wall. (c) Sensor uncertainty field for a fixed height and RGB-D camera orientation.
The darker cells indicate locations expected to produce greater information gain.

the helicopter. (We also assume perfect data association,
which for the purposes of experimental assessment allows
us to control the noise of the sensor by varying terms
in the measurement matrix. This is clearly an unrealistic
assumption but our simulation experiments with noisy
data association did not have significantly different results
and are not presented.) By rotating the helicopter’s yaw
orientation, the planner can direct the camera in different
directions, thereby enabling the helicopter to localize itself
in the environment using the features in its field-of-view
and a given map. This sensor model is unrealistic in terms
of the maximum range and the constant noise model, but
serves to illustrate how our planning approach achieves
varying accuracy at the goal. In the subsequent sections,
we show results for a more accurate sensor model in terms
of reaching the goal.

To create the corresponding sensor uncertainty field
shown in Figure 8(c), the trace of the information gain
matrix, tr( M), is evaluated at each location (x, y) in Cfree

for a fixed height, yaw, pitch, and roll angle. Here, the cam-
era is assumed to be pointing eastwards at a fixed height.
Note that the full SU field is the same dimensionality as C
and would require computing the information gain for every
coordinate in Cfree. (The 2D slice of the sensor uncertainty
field shown in Figure 8(c) is given only to illustrate the con-
cept.) We can, however, evaluate the information gain of

a specific position efficiently, allowing us to draw samples
randomly from Cfree and accept them based on their infor-
mation gains tr( M). The intensities of the cells in the map
in Figure 8(c) correspond to the information gain, where
darker map cells indicate locations that are expected to pro-
duce greater information gain. For instance, the region in
the center of the map has high information gain because of
the high concentration of features along the walls in that
region. The information gain increases with the distance to
each wall because the number of features in the field of view
increases more than the growing covariance, until the dis-
tance to the wall is greater than the maximum range of the
sensor. Locations where the associated sensor measurement
is expected to detect more than one obstacle in the map also
tend to have higher information gain compared to those that
just encounter one obstacle. Remember that we do not need
to simulate actual measurements; in order to compute tr( M)
we only need the measurement Jacobians.

Environmental adaptation

Note that values of tr( M) do not form a proper distribu-
tion, so we cannot accept or reject samples trivially accord-
ing to tr( M). Additionally, the range of values of tr( M)
will vary across environments, depending on how easy
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the given world is to localize in. Therefore, for a spe-
cific environment, and for k samples x1, . . . , xk with cor-
responding information gains tr( M1) , . . . , tr( Mk), we esti-
mate a normal distribution over the information such that
tr( Mk)∼ N( μk , σk), where ( μk , σk) are the sample mean
and covariances of tr( M1:k). We then perform rejection sam-
pling according to this distribution. For a new sample xk ,
we draw a rejection threshold Pk according to the latest
sampled normal distribution, and we retain the sample if
tr( Mk) > Pk , otherwise reject it. This provides us with an
online method for estimating the distribution of informa-
tion in the environment, and allows us to bias our accepted
samples towards areas with greater expected information
gain relative to the rest of the environment. By perform-
ing rejection sampling with a Gaussian proposal distribu-
tion, we preserve the support of the distribution over the
entire configuration space. The measure provided by sen-
sor uncertainty sampling changes the performance of the
sampler (as discussed by Hsu et al. 2006) in contrast to sam-
pling strategies with other measures but does not affect the
completeness of the algorithm.

3.2.2. Unscented Kalman filter sampling When using a
state estimator that does not directly compute Mt, recall
that we can recover Mt from the prior distribution p( x)
and the posterior distribution p( x|z), for example from the
unscented Kalman filter as in Section 3.1. However, to
recover Mt from the UKF prior and posterior requires us
to invert the St matrix with complexity O( |Z|3), where |Z|
is the number of measurements. In EKF-SU sampling, we
were able to avoid this complexity because the Mt matrix
could be computed directly from the measurement Jaco-
bians. Given the number of measurements and the large
number of samples that must be evaluated for information
gain, inverting St may be computationally expensive. We
therefore sample according to the traditional information
gain I

I( x)= H( p( x) )−H( p( x|z) ) (3)

where the entropy is H( p( x) )= − ∫ p( x) log p( x). Note
that we do not necessarily know which measurement
we will receive at a given x, so we approximate equa-
tion (3) using the most likely measurement such that z =
argmaxz p( z|x). Given that we have assumed that the belief
of the helicopter’s position is represented as a Gaussian
distribution, H( p( x) ) is cheaper to compute than Mt. In
addition, since our analysis (Figure 7(b)) suggested that the
measure of information gain was statistically insensitive to
the choice of prior, we use a constant prior p( x)= �0 to
evaluate sensor uncertainty, such that H( p( x) )= P0

I( x)= P0 − H( p( x|z) ) (4)

where p( z|x) is calculated according to the UKF algo-
rithm by simulating the sensor measurement at the sample’s
location and finding the probability of observing the sen-
sor measurement at each of the sigma points. In general,

Algorithm 2 UKF sensor uncertainty sampling algorithm
Require: Map C, number of samples N , constant prior P0

1: while size of graph < N do
2: Sample a pose, xk , from C, with equal probability
3: if xk ∈ Cfree then
4: Simulate expected sensor measurement, z, at xk

5: Generate sigma points, χi, about xk according to
constant prior P0, creating prior distribution p( xk)

6: Calculate information gain I( xk)= P0 −
H( p( z|xk) )

7: Normalize I( xl) such that I( xk)∈ [0, 1]
8: Update mean of I, μk = 1

k

∑k
m=1 I( xm)

9: Update cov of I, σk = 1
k−1

∑k
m=1( I( xm)−μk)2

10: Sample threshold Pk from normal distribution
N ( μk , σk)

11: if I( xk) > Pk then
12: Add xk to graph with probability I( xk)
13: end if
14: end if
15: end while
16: return graph

Table 3. Average time (in ms) to compute tr( Mt) and I( x)

Number of measurements

90 300 500

tr( Mt) 0.731 2.84 7.23
I( x) 0.0743 0.187 0.289

the lower the probability of observation at the neighbor-
ing sigma points, the smaller the entropy of the posterior
distribution, and therefore the greater the information gain.
We normalize the information gain I( x) so that it lies in
the range [0,1] by dividing by P0. Similar to our approach
for EKF-SU sampling, we then estimate a normal distribu-
tion over the information gain such that I( x)∼ N( μk , σk),
where ( μk , σk) are the sample mean and covariances of
I( x). Finally, we choose a rejection threshold Pk accord-
ing to this normal distribution, and accept the sample if
I( x) > Pk . Algorithm 2 summarizes the UKF-SU sampling
strategy.

Table 3 shows the computational benefit of rejection sam-
pling according to the information gain I( x), rather than a
measure on Mt. We evaluated the time taken to generate
samples for a range of measurements using the two differ-
ent rejection sampling functions. Regardless of the number
of measurements, we saw an order of magnitude in time
savings when calculating information gain, which can be
significant for large graphs.

Figure 9(a) shows the samples drawn according to the
sensor uncertainty. Observe that the sampling density is
highest in the same region as the dark region in Figure 8(c)
(center of map), and is lowest when far from any environ-
mental structure, which consequently provides little or no
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localization information. For comparison, 9(b) shows the
samples drawn according to a uniform sampling strategy.

In practice, the differences in sampling strategies can
result in different paths and correspondingly different
uncertainties. Figure 9(a) shows that the sampler avoided
placing samples in the large open space of the environ-
ment, and the samples are more clustered near the walls
in the environment. As a result, the paths created by sen-
sor uncertainty sampling tend to stay in regions with high
information gain, since the samples were probabilistically
chosen based on the amount of information gain each was
expected to provide. The uniform sampling strategy also
attempts to find a low-uncertainty path but the lack of sam-
ples in the regions with high information gain results in a
path with higher uncertainty.

3.2.3. Alternate sampling strategies In the figures, the SU
sampler appears to put samples close to obstacles, and a
sampler that simply samples close to obstacle boundaries
may do well. To test this hypothesis and evaluate the effec-
tiveness of the SU sampling strategy, we compared it with
other sampling strategies that have gained popularity in the
literature. Although these algorithms have been proposed
to improve the performance of the PRM algorithm, they can
also be used to test the performance of the SU strategy in the
BRM context. In this section, we first describe three alter-
native sampling strategies (uniform, Gaussian, and bridge),
before reporting the results of the BRM path-planning when
using each of these strategies. We will see that in fact
the SU sampling strategy leads to better performance than
sampling strategies that use the obstacle boundaries.

Uniform sampling. Uniform sampling is the most basic
sampling strategy used by the majority of sampling-based
techniques. This algorithm does not use any known infor-
mation about the world, but merely samples C uniformly,
and adds samples to the graph that are in Cfree. By employ-
ing a simple collision-check function, the uniform sampling
strategy is a very efficient means of obtaining the general
connectivity of a given map. Figure 9(b) shows an example
of the samples generated using this sampling method; note
that unlike the SU sampler, the uniform sampler places sam-
ples in the middle of the open area. With a small number
of samples (100), there are not enough samples facing the
environmental structure and near enough to the structure
to localize well. As a result, the predicted covariances of
the planned path are much larger than those for the planned
path using the SU samples (Figure 9(a)). Even though the
same planner and objective function are used in both fig-
ures, the different samples result in dramatically different
performance, especially for small numbers of samples.

Gaussian sampling: A significant limitation of the uniform
sampling strategy is that it often fails to represent impor-
tant regions in Cfree, for instance, difficult regions such as
narrow corridors and areas around obstacles may not be

(a) SU Sampling (b) Uniform Sampling

Fig. 9. (a) Distribution of 100 samples (shown in red) drawn using
sensor uncertainty sampling. (b) Distribution of 100 uniformly
drawn samples. In both figures, the dark circles are the 1−σ

ellipses of the covariance. Smaller circles are higher-certainty
positions. Note that this is a bird’s-eye view and the helicopter
can fly over some obstacles. Also note that each sample is a point
in R3×S1×S1; the SU samples have a high bias towards sensor
orientations towards the environmental features. In both figures,
the paths are found using the BRM, but because the uniform sam-
pling strategy has many more samples with orientations that do not
point towards the environmental features, the overall uncertainty is
much higher.

sampled unless a large number of samples are used, incur-
ring a large computation cost. Boor et al. (1999) present a
Gaussian sampling strategy that attempts to give better cov-
erage of the difficult parts of the free configuration space,
especially those areas that are close to obstacles. Gaussian
sampling biases samples towards obstacles in the environ-
ment, which, in the context of the BRM, would seem to be
a reasonable approximation for areas with higher informa-
tion gain. The algorithm first uniformly samples the C space
to obtain a sample, x1

k , regardless of whether it is in Cfree

or Cobs. A distance value, d, and direction θ are then cho-
sen according to normal distributions, and a second sample,
x2

k , is generated at a location d away from x1
k in the direc-

tion of θ . The two samples are then tested to determine if
they belong to the subspaces Cfree or Cobs; if the samples
are in different subspaces of C, the sample that is in Cfree

is then added to the graph. For the purposes of our eval-
uation, using the general intuition that the samples should
be within viewing range of the obstacles and features in the
environments, we set σ , the standard deviation of the distri-
bution on d, to be the maximum range of the sensor used for
localization. Figure 10(a) shows an example set of samples
generated by the Gaussian sampling strategy.

The intent of the Gaussian sampler is to place samples
near environmental structure, which may seem similar in
spirit to the SU sampler. However, nearness to obstacles is
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(a) 100 Samples generated
from Gaussian Sampling

(b) 100 Samples generated
from Bridge Sampling

Fig. 10. (a) Distribution of 100 samples drawn using Gaussian
sampling. (b) Distribution of 100 samples drawn using bridge
sampling.

insufficient – a sample may be placed too near an uninfor-
mative obstacle in terms of perceptual features, or may be
placed in an orientation that is not helpful. With a small
number of samples (100), there are not enough samples to
provide useful localization. As a result, just as in the uni-
form sampler, the predicted covariances of the planned path
are much larger than those for the planned path using the
SU samples.

Bridge sampling. A third algorithm addresses a specific
problem encountered by many sampling strategies of not
being able to identify narrow passages through a given envi-
ronment. Being able to find narrow passages through Cfree is
often critical to finding good paths in many motion planning
problems. However, narrow passages are also the hardest
for a randomized sampler to find and add to the graph,
requiring strategies that are biased towards finding paths in
narrow passages.

To address this problem, the bridge test for sampling nar-
row passages was developed by Hsu et al. (2003). The key
idea is to only add a sample to the graph when it is found to
be between two obstacles. Two samples, x1

k and x2
k , are first

sampled from the map environment, with x2
k being drawn

from a normal distribution with mean x1
k and a given vari-

ance σ . If both samples are found to be in Cobs, the midpoint
between the two samples is then generated and tested for
collisions. This midpoint is added to the graph if it is in
Cfree. For reasons similar to the Gaussian sampling strategy,
σ was set at twice the maximum sensor range. Figure 10(b)
shows an example set of samples generated using the bridge
strategy. Just as in the uniform and Gaussian sampler, the
predicted covariances of the planned path are much larger
than those for the planned path using the SU samples.

3.3. Comparison of sampling strategies:
Simulated camera-equipped helicopter

We tested the effectiveness of the SU sampling strategy
against the alternative sampling algorithms above by run-
ning experiments on the system described in Section 3.2.1:
a helicopter navigating in the simulated environment of
MIT’s Stata Center ground floor, as shown in 8(b).

We first observe that the SU strategy is particularly use-
ful when there is variability in terms of the information
available to the sensors throughout the environment. As dis-
cussed previously, our initial simulated experiments are per-
formed with an unrealistically poor RGB-D camera model
where the sensor’s capability is particularly limited, such
that finding paths that maximize information gain through-
out the path then becomes even more critical. Figure 11
compares the performance of the SU and uniform sam-
pling strategies under different noise and sensor limitation
conditions. When the control and measurement noise is
doubled and the maximum sensor range is reduced (Figure
11(b)), the resultant uncertainty for both sampling strate-
gies increases. However, the emphasis on finding samples
with high information gain under the SU sampling strat-
egy reduces the effect of the noisier conditions, resulting
in a greater absolute difference in uncertainty between both
sampling strategies.

Next, to compare the different sampling strategies and
illustrate the performance of the BRM strategy, we ran-
domly selected five start and goal positions in the map
where the straight-line distance between both points was at
least a minimum length of 8.53 m and an average length of
13.66 m. For each start-goal combination, we sampled the
environment using each of the four sampling strategies and
a range of sample set sizes. After creating a graph of nodes
from these samples, the BRM and PRM planning strategies
were executed and the performance of the resulting plans
compared. For a given start-goal combination, sampling
strategy and sample set size, the experiment was repeated
30 times.

Figure 12 shows the advantage of planning with the
BRM, and sampling using the sensor uncertainty sampling
strategy. This figure reports the performance of each of the
sampling strategies and planning methods, using a fixed
start and goal for all trials, over a range of sample set sizes,
where performance is measured by the percentage of trials
that failed to find a feasible path (bar graphs), as well as the
average trace of the helicopter’s expected covariance at the
goal after executing the planned path (line graphs).

Table 4 shows a comparison of the sampling strategies
across various initial start and goal positions using 100
samples. An infeasible path was defined as one where the
covariance of the state estimate was greater than a thresh-
old. The results not only suggest that the BRM substantially
outperforms the PRM in producing paths with lower uncer-
tainty, but also that the SU sampling strategy allows us
to achieve better paths with fewer samples. Regardless of
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Fig. 11. Performance of SU and uniform sampling strategies under different noise conditions. The high noise scenario has double the
control and measurement noise relative to the low noise model, as well as a 25% reduction in maximum sensor range. The bar plots
under each graph show the percentage of feasible paths that each algorithm was able to find.
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Fig. 12. Comparison of the different sampling strategies and plan-
ning methods. All trials presented in this graph used the same start
and goal to perform the search. Each data point represents 30 tri-
als, and the error bars represent the standard error of the computed
matrix trace. The bar graphs along the bottom of the figure show,
for each sampling-planning strategy and number of samples, the
percentage of the 30 trials that failed to find a path that satisfied
the constraints on the covariance (our true objective function). The
line graph also plots the trace of the helicopter’s expected covari-
ance at the goal when we use different sampling strategies, sample
sizes, and planning methods. Lower covariances at the goal also
typically correspond to more accurate performance, and is often
used as an alternate objective function for motion planning in
belief space.

the initial conditions, the SU sampling strategy consistently
outperformed the other sampling strategies, in terms of both
the percentage of paths found and the expected uncertainty

Table 4. Performance of different sampling strategies across dif-
ferent paths, using 100 samples.

Path 1 Path 2 Path 3 Path 4 Path 5

Uniform % success 100 96.6 100 100 100
Final cov 17.87 22.60 2.22 19.11 1.48

SU % success 100 96.6 100 100 100
Final cov 12.38 11.36 1.99 12.39 1.39

Gaussian % success 96.6 96.6 100 93.1 89.7
Final cov 23.89 17.89 17.2 22.16 1.41

Bridge % success 100 3.5 17.2 100 13.8
Final cov 21.58 13.48 2.33 21.32 1.36

at the goal. These results emphasize that SU sampling is
also not equivalent to simply sampling close to obstacle
boundaries.

Table 5 shows a comparison of the performance and time
costs of different combinations of sampling and planning
strategies. The conventional PRM method is unsurprisingly
the fastest algorithm, but suffers from poor localization per-
formance. The BRM suffers from additional time complex-
ity when building the graph; in particular, the BRM with
SU sampling incurs the largest time penalty in building
the graph because of the need to calculate the information
gain matrix of every potential sample. However, the graph
construction is a one-time operation and can be amortized
across multiple queries.

Finally, we replaced the sensor model with a more realis-
tic RGB-D model, and a more accurate map of a real envi-
ronment (shown in Figure 17(a)). We modeled the RGB-D
sensor model as a Microsoft Kinect with a 4 m max range
and 57◦ field of view in the yaw and 43◦ in pitch direc-
tions and a Gaussian noise model, which is a function of
depth, such that σ = 1.5 × 10−5 × d (Khoshelham 2011).
Note that for position estimation, we saw experimentally
that the noise model of the individual features had little
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Table 5. Performance and time costs of different planners.

Trace cov Graph build Path search
at goal time (s) time (s)

PRM, uniform sampling 56.38 0.79 0.15
BRM, uniform sampling 19.11 110.75 0.38
BRM, SU sampling 12.31 323.12 0.55
BRM, Gaussian sampling 22.82 88.14 0.21
BRM, bridge sampling 21.92 178.58 0.30

effect – the dominant effect was the number of available
features. Figure 13 shows the performance of the different
algorithms using the RGB-D camera model. Figure 13(a) is
the relevant measure for our application: the ability to find
paths that satisfy the constraint on the covariance. We see
that even with very few samples, the BRM is able to find a
feasible path. For comparison with Figure 12, we also pro-
vide the covariance at the the goal. We see that the BRM
algorithms are consistently able to find lower covariance
trajectories (the absolute values of the covariances between
Figures 12 and 13(b) are not comparable because the sensor
model and state space are different, and so different overall
uncertainties are feasible.)

An examination of Table 5 also shows that the SU sam-
pling does incur some additional cost, in that the time to
build the graph is higher than the other sampling tech-
niques. In a planning scenario with repeated queries, this
cost can be amortized over future queries. In a single query
setting, if there is little variability in terms of information
over the environment, then the uniform sampling strategy
may be preferable. There are relatively few real-world sce-
narios where there is little information throughout the envi-
ronment. However, in domains where the available sensors
are powerful enough to provide accurate localization every-
where and only a single planning query is to be generated,
the uniform sampling strategy may be more efficient.

4. Indoor navigation results

In addition to evaluating the visual odometry algorithms
reported in Section 2.2, we conducted a number of
autonomous flight experiments in the motion capture sys-
tem and in larger environments. In these experiments, the
vehicle flew autonomously with state estimates provided by
the algorithms presented in this paper.

Figure 14 shows an example where the MAV was com-
manded to hover at a target point using the RGB-D cam-
era, along with statistics about how well it achieved this
goal. The ground-truth trajectory and performance mea-
sures were recorded with the motion capture system.

4.1. Laser-based validation of belief space
navigation

We performed a number of experiments onboard an actual
quadrotor helicopter to demonstrate the properties of our

navigation in belief space. The vehicle was commanded
through the environment by a human operator selecting des-
tination waypoints using a graphical interface. The purpose
of these experiments was to characterize the ability of the
MAV to maintain a desired position and to follow a planned
trajectory. We initially validated our results by building on
our previous work (Bachrach et al. 2009b), which used a
Hokuyo UTM-30LX laser rangefinder for navigation and
localization. The UTM-30LX is a planar laser rangefinder,
which provides a 240◦ field-of-view at 40 Hz, up to an effec-
tive range of 30 m. The laser is mounted in the x-y plane of
the helicopter and we modified the laser to optically redirect
20◦ of its field-of-view to provide a small set of range mea-
surements in the (downward) z direction. In a single scan,
the vehicle is therefore able to estimate its position, yaw
orientation, and altitude with respect to environmental fea-
tures. We have shown previously that the measurement of
the ground plane is relatively noisy, although sufficient for
altitude control.

We performed navigation experiments in two world envi-
ronments: on the first floor of MIT’s Stata Center, which is
a wide indoor walkway environment (Figure 15(a)), and on
the first floor of MIT’s Walker Memorial building, an old
gymnasium open space that is often used for banquets and
functions (Figure 16(a)). For these two environments, we
focused on demonstrating the BRM algorithm’s ability to
generate paths that will allow the helicopter to remain well-
localized. We did not compare the BRM’s performance to
the PRM algorithm to avoid potential loss of control and
crashes resulting from inaccurate state estimation. Instead,
we artificially limited the range of the laser rangefinder
for both planning and state estimation; we demonstrate
the effect of different sensor range limits on the planned
paths and the need for incorporating sensor characteris-
tics when planning, before moving to mapping using the
RGB-D camera.

For each of these environments, we first generated a 2D
map of the environment using SLAM technology that has
been reported previously (Bachrach et al. 2009b). While
it may appear that localization using a 2D map is difficult
when the helicopter pitches and rolls, we also reported pre-
viously that 2D localization is relatively robust to changes
in pitch and roll (Bachrach et al. 2009b). Figures 15(b)
and 16(b) show the 2D map of both environments, as well
as the SU field indicating areas of sensor uncertainty, com-
puted according to equation (4). However, note that the
SU field is never actually constructed but SU samples are
generated via rejection sampling.

For each environment, two different paths were gener-
ated, each corresponding to a different maximum range for
the laser rangefinder. Different maximum ranges affect the
helicopter’s ability to localize itself, thus affecting the paths
generated by the BRM algorithm. Figures 15(c) and 16(c)
show the helicopter’s trajectories based on the paths gener-
ated by the BRM algorithm for the different sensor config-
urations. For the experiments along the office walkway, the
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(a) Paths Found (b) Goal Uncertainty

Fig. 13. Performance of the Kinect camera model in the environment shown in Figure 17. (a) The number of 60 trials that found a
feasible path, as a function of the number of samples. The BRM using the SU sampler found a feasible path 100% of the time except
when constrained to using 10 samples. (b) For comparison with Figure 12, we also provide a comparison of the trace of the helicopter’s
expected covariance at the goal (line graph) and the percentage of feasible paths that each algorithm was able to find (bar graph along
the bottom).

Metric
Duration 90 s
Mean speed 0.10 m/s
Mean pos. deviation 6.2 cm
Max pos. deviation 19 cm

Fig. 14. A plot showing the ground-truth trajectory of the vehicle during position hold. The red dot near the center is the origin around
which the vehicle was hovering. The vehicle was controlled using visual odometry, and its position measured with a motion capture
system.

cyan path denotes the trajectory when the sensor range was
set to 5 m, while the pink path denotes the trajectory for
the 10 m configuration. For the open indoor environment,
the cyan path represents the 8 m configuration, while the
pink path represents the trajectory when the sensor range
was 30 m. Due to the absence of a motion capture sys-
tem, all paths were recorded based on the helicopter’s state
estimate from its localization module, and the helicopter’s
ability to reach the goal location was verified using the
human eye.

In all of these scenarios, the helicopter successfully exe-
cuted the paths generated by the BRM algorithm, and the
actual and desired paths matched closely regardless of the
range limits. In addition, the path generated for the laser
with a shorter maximum range was always longer than that
of the laser with the longer maximum range. In general,
when the sensor is of higher quality, more of the envi-
ronment is well-localizable, and hence the planned path
more closely approximates the shortest path trajectory. In
contrast, a low-quality sensor requires more careful plan-
ning to ensure that the vehicle remains well-localized, often
resulting in a longer path.

We examined how the helicopter would perform if the
BRM had assumed a better sensor than actually available,
which allowed us to assess the effect of the sensor model
on the planning process. To avoid potential crashes, we did
not perform this analysis on actual hardware, but instead
modified the raw laser data from the earlier experiments.
Specifically, we post-processed the raw laser data from the
experiments shown in Figures 15 and 16, truncating the
laser data to have a shorter maximum range than was actu-
ally available or was known to the BRM during planning.
We then re-estimated the vehicle’s state along the trajec-
tory using the modified laser data, and evaluated whether
the helicopter was able to remain well-localized. In both
cases, the vehicle followed a trajectory that did not contain
enough information for the vehicle to stay well localized,
since the truncation to a shorter maximum range removed
a considerable amount of information from the sensor sig-
nal. Additionally, in both cases, the state estimate became
sufficiently uncertain that the vehicle control would likely
have become unstable. The crosses on both Figures 15(c)
and 16(c) indicate the point at which the helicopter was no
longer able to localize itself, determined when tr( �) was
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(a) Wide office walkway

(c) Executed paths for sensor with 5m (cyan) and 10m (pink) max range

(b) SU field

Fig. 15. Helicopter experiments in an office environment. (a)
View of environment. (b) SU field of the environment. The lighter
regions indicate areas of higher sensor uncertainty. Gray regions
indicate obstacles in the environment. (c) BRM paths executed
when the laser range was set to 5 m (cyan) and 10 m (pink). The
helicopter was able to successfully navigate both planned paths,
traveling 44.05 m and 36.28 m, respectively. The red cross denotes
where the state estimation would have failed if the 10 m path were
attempted using the 5 m sensor.

greater than 1. Given the helicopter’s strict requirements for
localizability, where it is essential to be well-localized at
every step, the crosses effectively mark the points where
the helicopter would have crashed given the planned path
and the modified sensor characteristics. It is therefore criti-
cal that sensor limitations are accurately incorporated when
planning under uncertainty.

4.2. Belief space navigation using the
RGB-D camera

We also demonstrated the use of the BRM algorithm for
navigation on the helicopter using the RGB-D camera. Fig-
ure 17(a) shows an example environment of an open space,
where the center of the environment is out of range of the
RGB-D camera. Additionally, the left side of the environ-
ment (in the picture) is essentially featureless. In Figure
17(b), we see that the sensor uncertainty field reflects the
absence of information along this wall.

Figure 17(c) shows the paths generated by the shortest
path planner (green) and the BRM planner using the RGB-
D sensor model (pink), with the corresponding covariances
of the state estimator drawn on top of each trajectory. As
expected, we see that the covariances of the state estimate
grow along the shortest path, but stay tightly bounded along
the BRM trajectory.

(a) Open, indoor environment

(b) SU field (c) Executed paths for sensor with 8m
(cyan) and 30m (pink) max range

Fig. 16. Helicopter experiments in a large open indoor environ-
ment. (a) View of environment. (b) SU field of the environment.
The lighter regions indicate areas of higher sensor uncertainty.
Gray regions indicate obstacles in the environment. (c) BRM
paths executed when the laser range was set to 8 m (cyan) and
30 m (pink). The helicopter was able to successfully navigate both
planned paths, traveling 36.58 m and 32.21 m, respectively. The
red cross denotes where the state estimation would have failed if
the 10 m path were attempted using the 5 m sensor.

Fig. 17. Helicopter experiments in a large open indoor environ-
ment. (a) View of environment. (b) SU field of the environment
(slice at 0◦ yaw). The lighter regions indicate areas of higher
sensor uncertainty. Gray regions indicate obstacles in the environ-
ment. (c) BRM paths using the RGB-D model (maximum range
4 m, pink) and laser (maximum range 30 m, green).
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4.3. Mapping using the RGB-D camera

Finally, we experimentally validated our mapping algo-
rithms using the RGB-D camera. We have flown in a num-
ber of locations around the MIT campus, and at the Intel
Research office in Seattle. Two such experiments are shown
in Figure 18. As the MAV covered greater distances, the
RGB-D mapping algorithm limited the global drift on its
position estimates by detecting loop closures and correct-
ing the trajectory estimates. The trajectory history was
then combined with the RGB-D sensor data to automat-
ically generate maps that are useful both for a human
operator’s situational awareness, and for autonomous path
planning and decision making. While ground-truth position
estimates are not available, the quality of the state estimates
computed by our system is evident in the rendered point
cloud.

(a) (b)

Fig. 18. Trajectories flown by the MAV in two navigation experi-
ments.

(a) (b)

Fig. 19. Voxel maps for the environments in Figure 18. (a)
Dense maximum-likelihood occupancy voxel map of the envi-
ronment depicted in Figure 18(a), false-colored by height.
Unknown/unobserved cells are also tracked, but not depicted here.
(b) A voxel map of the environment in Figure 18(b) allows the
vehicle to plan a collision-free 3D trajectory (green).

Figure 19(a) shows an occupancy voxel map populated
using the dense depth data provided by the RGB-D sensor.
These occupancy maps can be used for autonomous path
planning and navigation in highly cluttered environments,
enabling flight through tight passageways and in close prox-
imity to obstacles. Figure 19(b) shows a rendering of the
MAV’s internal state estimate as it flew through the environ-
ment depicted in Figure 18(b). While these renderings are
not necessary for obstacle avoidance, they would serve to
provide a human operator with greater situational awareness
of the MAV’s surrounding environment.

5. Related work

This paper uses techniques from previous results, adapted
for the domain of an RGB-D camera. Specifically, the
visual odometry uses the FAST feature detector developed
by Rosten and Drummond (2006), the rotation estimation
described by Mei et al. (2009), feature matching described
by Nistér et al. (2004), and the inlier detection described by
Howard (2008). Our contribution in this area is the experi-
mental analysis of the best practices compared with a range
of alternative techniques. The mapping process integrates
the visual odometry for local map construction and builds
on the previous results of Henry et al. (2010) for global
loop closure. Finally, the planning process builds on the
belief roadmap algorithm (Prentice and Roy 2009) and pre-
vious initial results in sensor uncertainty sampling (He et al.
2008b). We also provide a novel sampling strategy, which
adapts to the information available in the environment, and
detailed comparisons with other sampling strategies.

5.1. Visual odometry

Visual odometry refers to the process of estimating a vehi-
cle’s 3D motion from visual imagery alone, and dates back
to Moravec’s work on the Stanford cart (Moravec 1980).
The basic algorithm used by Moravec and others is to
identify features of interest in each camera frame, esti-
mate depth to each feature (typically using stereo), match
features across time frames, and then estimate the rigid
body transformation that best aligns the features over time.
Since then, a great deal of progress has been made in
all aspects of visual odometry. Common feature detec-
tors in modern real-time algorithms include Harris cor-
ners (Harris and Stephens 1988) and FAST features (Rosten
and Drummond 2006), which are relatively quick to com-
pute and resilient against small viewpoint changes. Meth-
ods for robustly matching features across frames include
RANSAC-based methods (Nistér et al. 2004; Konolige
et al. 2007; Johnson et al. 2008) and graph-based consis-
tency algorithms (Howard 2008). In the motion estimation
process, techniques have ranged from directly minimizing
Euclidean distances between matched features (Horn 1987),
to minimizing the pixel reprojection error instead of 3D dis-
tance (Nistér et al. 2004). When computation constraints
permit, bundle adjustment has been shown to help reduce
integrated drift (Konolige et al. 2007).

Visual odometry estimates local motion and generally
has unbounded global drift. To bound estimation error, it
can be integrated with simultaneous localization and map-
ping (SLAM) algorithms, which employ loop closing tech-
niques to detect when a vehicle revisits a previous loca-
tion. Most recent visual SLAM methods rely on fast image
matching techniques (Snavely et al. 2006; Newman et al.
2009) for loop closure. As loops are detected, a common
approach is to construct a pose graph representing the spa-
tial relationships between positions of the robot during its
trajectory and environmental features, creating constraints
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that link previous poses. Optimization of this pose graph
results in a globally aligned set of frames (Olson et al. 2006;
Grisetti et al. 2007b; Kaess et al. 2008). For increased visual
consistency, sparse bundle adjustment (SBA) (Triggs et al.
2000) can be used to simultaneously optimize the poses and
the locations of observed features.

5.2. MAVs and visual navigation

The primary focus in the visual odometry communities
has been on ground vehicles; however, there has been a
significant amount of research on using visual state esti-
mation for the control of MAVs. For larger outdoor heli-
copters, several researchers have demonstrated various lev-
els of autonomy using vision-based state estimates (Buskey
et al. 2004; Kelly and Sukhatme 2007). While many of the
challenges for such vehicles are similar to smaller indoor
MAVs, the payload and flight environments are quite differ-
ent. For smaller MAVs operating in indoor environments,
a number of researchers have used monocular camera sen-
sors to control them (Celik et al. 2008; Steder et al. 2008;
Ahrens et al. 2009; Blösch et al. 2010). Ko et al. (2007)
use the iMote2 technology and the UKF for state estima-
tion in aerial vehicles, and Valenti et al. (2006) were the
first to demonstrate reliable navigation and position esti-
mation on quadrotor helicopters. However, these algorithms
require specific assumptions about the environment (such as
known patterns) to obtain the unknown scale factor inherent
in using a monocular camera. Previous work in our group
used a stereo camera to stabilize a MAV in unknown indoor
environments (Achtelik et al. 2009), but the computation
had to be performed offboard, and no higher level mapping
or SLAM was performed.

Finally, there has been considerable work in using laser
rangefinders for MAV navigation and control (He et al.
2008b; Bachrach et al. 2009a; Grzonka et al. 2009; Shen
et al. 2011) with the limitations discussed earlier in this
paper. Laser range-finding onboard helicopters is also not
a novel technology (Thrun et al. 2003; Mejias et al. 2006),
and more recently, a number of quadrotor configurations
have been developed (Angeletti et al. 2008; Grzonka et al.
2009) that are similar to the design first proposed by He
et al. (2008a).

5.3. Visual mapping

Our objective is not only alignment and registration, but
also building 3D models with both shape and appear-
ance information. In the vision and graphics communities,
a large body of work exists on alignment and registra-
tion of images for 3D modeling and dense scene recon-
struction (e.g. Pollefeys et al. 2008). However, our focus
is primarily on scene modeling for robot perception and
planning, and secondarily for human situational aware-
ness (e.g. for a human supervisor commanding the MAV).
Strobl et al. (2009) combined a time-of-flight camera with

a stereo camera to build 3D object models in real time.
Kim et al. (2009) used a set of time-of-flight cameras
in a fixed calibrated configuration and with no temporal
alignment of sensor streams. Se and Jasiobedzki (2008)
used a stereo camera combined with SIFT features to cre-
ate 3D models of environments, but made no provision
for loop closure or global consistency. Newcombe and
Davison (2010) developed an impressive system for real-
time dense 3D reconstruction with a monocular camera,
although their system is still limited to small feature-rich
scenes.

There has also been a large amount of work on dense
reconstruction from videos (e.g. Pollefeys et al. 2008) and
photos (e.g. Debevec et al. 1996; Furukawa and Ponce
2009), mostly on objects or outdoor scenes. One inter-
esting line of work (Furukawa et al. 2009) attacks the
arguably harder problem of indoor reconstruction, using a
Manhattan-world assumption to fit simple geometric mod-
els for visualization purposes. Such approaches are compu-
tationally demanding and not very robust in feature-sparse
environments.

5.4. Motion planning under uncertainty

Modern approaches to planning with incomplete state infor-
mation are typically based on the partially observable
Markov decision process (POMDP) model or as a graph
search through belief space (Bonet and Geffner 2000).
While the POMDP provides a general framework for belief
space planning, the complexity of the solution grows expo-
nentially with the length of the policy and the number of
potential observations. Approximation algorithms exist to
mitigate the problem of scalability (Pineau et al. 2003;
Smith and Simmons 2004), but these techniques still face
computational issues in addressing large problems. Other
papers have incorporated sensor characteristics for plan-
ning (Taïx et al. 2008), though the algorithm assumes that a
non-collision path already exists, and focuses on determin-
ing the best landmarks to associate with each part of the
path. Van den Berg et al. (2010) proposed using a distribu-
tion over state estimates with a conventional rapidly explor-
ing random tree to generate motion plans, although this
approach is not complete and can fail to find feasible plans.
Bry and Roy (2011) proposed the rapidly exploring random
belief tree to track a distribution over state estimates along
with the conventional Kalman filter covariance using an
incremental sampling technique to refine trajectories, and
is strongly related to the BRM algorithm.

The extended Kalman filter and unscented Kalman filter
have been used extensively, especially for state estimation.
The symplectic form (and related Hamiltonian form) of the
covariance update has been reported before, most recently
by Mourikis and Roumeliotis (2006). Planning algorithms
have also incorporated these filters to generate paths that are
robust to sensor uncertainty (Brooks et al. 2006; Gonzalez
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and Stentz 2007). However, without the efficient covari-
ance update presented in this paper, the deterministic search
performed by these planning algorithms is computationally
expensive.

6. Conclusion

This paper presented an experimental analysis of our
approach to enabling autonomous flight using an RGB-
D sensor. Our system combines visual odometry tech-
niques from the existing literature with our previous work
on autonomous flight and mapping, and is able to con-
duct all sensing and computation required for local posi-
tion control onboard the vehicle. Using the RGB-D sensor,
our system is able to plan complex 3D paths in cluttered
environments while retaining a high degree of situational
awareness. Additionally, we showed how the belief roadmap
algorithm (Prentice and Roy 2007, 2009) can be used to
plan trajectories that incorporate a predictive model of sens-
ing, allowing the planner to minimize the positional error
of the helicopter at the goal using an efficient graph search.
The original BRM algorithm assumed an extended Kalman
filter model for position estimation, and we showed how this
algorithm can be extended to use the unscented Kalman fil-
ter and provided a new sampling strategy for UKF position
estimation. We concluded with an experimental validation
of our overall system for both laser- and RGB-D-based
navigation and mapping.
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Appendix A. The extended Kalman filter

For reference, we provide a description of the extended
Kalman filter equations. Bayesian filtering is one of
the most robust methods of localization (Leonard and
Durrant-Whyte 1991), in which a probability distribution
p( xt|u1:t, z1:t) is inferred over the (unknown) vehicle state
xt at time t following a series of noisy actions u1:t and
measurements z1:t. With some standard assumptions about
the actions and observations, the posterior distribution (or
belief) can be expressed as

p( xt|u1:t, z1:t) = 1

Z
p( zt|xt)

∫
S
p( xt|ut, xt−1) p( xt−1) dxt−1 (5)

where Z is a normalizer. Equation (5), known as the Bayes’
filter, provides an efficient, recursive way to update the state
distribution.

The Kalman filter is a form of Bayes filtering that
assumes that all probability distributions are Gaussian such
that p( xt)= N( μt, �t) with mean μt and covariance �t,
and that the transition and observation Gaussians are lin-
early parameterized by the state and control. The extended
Kalman filter (EKF) allows the same inference algorithm to
operate with non-linear transition and observation functions
by linearizing these functions around the current mean esti-
mate. More formally, the next state xt and observation zt are
given by the following functions

xt = g( xt−1, ut, wt) , wt ∼ N( 0, Wt) (6)

and zt = h( xt, qt) , qt ∼ N( 0, Qt) (7)

where ut is a control action, and wt and qt are random,
unobservable noise variables. The EKF computes the state
distribution at time t in two steps: a process update based
only on the control input ut leading to an estimate p( xt)=
N( μt, �t), and a measurement update to complete the
estimate of p( xt)= N( μt, �t). The process step follows as

μt = g( μt−1, ut) , �t = Gt�t−1GT
t + VtWtV

T
t (8)

where Gt is the Jacobian of g with respect to x and Vt is the
Jacobian of g with respect to w. For convenience, we denote
Rt � VtWtV T

t . Similarly, the measurement step follows as

μt = μt + Kt( Htμt − zt) , �t =( I − KtHt) �t (9)

where Ht is the Jacobian of h with respect to x and Kt is
known as the Kalman gain, given by

Kt = �tH
T
t

(
Ht�tH

T
t + Qt

)−1
(10)
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An alternate form of the EKF represents the distribution
p( xt|u1:t, z1:t) by an information vector ξt and information
matrix 
t��−1

t . The information form may be more effi-
cient to compute in domains where the information matrix
is sparse (Thrun et al. 2004). The information matrix update
can be written as


t = �
−1
t = ( Gt�t−1GT

t + Rt)
−1

(11)


t = 
t + HT
t Q−1

t Ht (12)

For convenience, we denote Mt � HT
t Q−1

t Ht such that 
t =

t +Mt.

Appendix B. The unscented Kalman filter

The critical step of the BRM algorithm is the construction
of the transfer function, which depends on terms Rt and Mt,
the projections of the process and measurement noise terms
into the state space. Rt and Mt also represent the information
lost due to motion, and the information gained due to mea-
surements, respectively. When using the extended Kalman
filter to perform state estimation, these terms are trivial to
compute. However, the EKF is not always a feasible form of
Bayesian filtering, especially when linearizing the control or
measurement functions results in a poor approximation.

One recent alternate to the EKF is the unscented Kalman
filter (UKF) (Julier et al. 1995), which uses a set of 2n + 1
deterministic samples, known as “sigma points” from an
assumed Gaussian density both to represent the probabil-
ity density of a space of dimensionality n and to directly
measure the relevant motion and measurement covariances.
These samples are generated according to

X 0
t =μt−1 (13)

X i
t =μt−1 +

(√
( n+ λ) �t

)i
, i=1, . . . , n (14)

X i
t =μt−1 −

(√
( n+ λ) �t

)i
, i=n+1, . . . , 2n (15)

where
(√

( n+ λ) �t

)i
is the ith column of the root of the

matrix. Each sigma point X i has an associated weight wi
m

used when computing the mean, and wi
c is the weight used

when computing the covariance, such that
∑2n

i=0 wi
c = 1,∑2n

i=0 wi
m = 1. The weights and the λ parameters are chosen

to match the mean and variance of the assumed Gaussian
distribution; the mechanism for choosing these parame-
ters can be found in Julier et al. (1995). The samples are
propagated according to the non-linear process model such
that

X i
t = g(X i

t , u, 0) (16)

generating the process mean and covariance

μt =
2n∑

i=0

wi
mX

i
t (17)

�t =
2n∑

i=0

wi
c(X i

t − μt) (X i
t − μt)+Rt (18)

The measurement function uses the process mean and
covariance to create sigma points in the measurement space,
which are then used to generate the posterior mean and
covariance ( μt, �t), such that

Z i
t = h(X i

t, 0) , μz
t =

2n∑
i=0

wi
mZ

i
t (19)

St =
(

2n∑
i=0

wi
m(Z i

t − μz
t ) (Z i

t − μz
t )

T

)
+ Qt (20)

Kt =
(

2n∑
i=0

wi
c(X i

t − μt) (Z i
t − μz

t )
T

)
S−1

t (21)

μt = μt + Kt( zt − μz
t ) (22)

�t = �t − KtStK
T
t (23)

Note that Rt � VtWtV T
t and Qt are the same process and

measurement noise terms from the EKF definition given in
equations (6–10). The advantage of the UKF is that the pro-
cess and measurement functions are not projected into the
state space by a linearization; instead, the unscented trans-
form computes the moments of the process and measure-
ment distributions in the state space itself. As a result, the
UKF eliminates the need for linearization and captures the
distribution accurately up to the second order, rather than
the first order fidelity of the EKF.

Although the UKF provides a mechanism for efficiently
tracking the posterior distribution as a Gaussian while
avoiding linearization of the measurement model, the UKF
no longer calculates the Mt matrix, which is a critical piece
of the individual transfer functions ζt. Nevertheless, we can
still recover Mt from the UKF update directly by working in
the information form and noticing that Mt is the information
gain due to measurement zt. We can combine equation (12)
and equation (23)


t = 
t +Mt (24)

⇒ Mt = 
t −
t (25)

= �−1
t −�

−1
t (26)

=( �t − KtStK
T
t )−1−�

−1
t (27)

In order to calculate the Mt matrix for a series of points
along a trajectory, we therefore generate a prior covariance
and compute the posterior covariance as in equation (23).
The UKF is still a projection of the measurement noise into
the state space, but is a more accurate projection than an
explicit linearization of the measurement model. Addition-
ally, the UKF covariance update does not depend on the
actual measurement received, exactly as in the EKF.
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